联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
1.油水界面的调节 根据油田油品特性特点不同,对油水指标要求不同,处理液量不同的特点,我们要及时分析,及时调整合理的油水界面。在三相分离器运行中,合理的油水界面是如何高效的发挥三相分离作用的必然条件。当低含水油进三相要求出合格油时,就应尽可能降低油水界面。 2.低含水油对三相分离器运行的影响和管理 目前本站使用的三相分离器都是卧式分离器,原油从进口进入沉降缓冲室。由于缓冲室与沉降之间连通,原油必须与缓冲室的水相混合。如果低含水油进三相,则易产生更多的乳化液,而使油水界面逐层下移,造成油水界面不清晰,造成水室跑油现象。 3.破乳剂、温度对三相分离器脱水的影响 破乳剂是一种高分子的有机化合物,是高效能的表面活性物质,当加入原油乳化液中,这种物质能够吸附在油水界面上挤掉乳化剂所占据的位置,降低了界面薄膜的机械强度,改变乳化液类型及稳定性.。长期以来破乳剂脱水是一项很有效的化学脱水方式。 三、高效三相分离器操作中出现的问题及处理办法1.在三相分离器分离过程中产生油串气(跑油)现象,即油箱中的油进入气天然气管道,随后进入气区,从而污染气区设备。高效三相分离器产生油串气现象时,原油随分离出的气进入气区设备,造成压缩机进油,严重时发生爆裂,所以一定要检测好数据,不能发生油串气现象。 产生油串气现象的原因有:采油区来液量过大;来液量忽高忽低,三相分离器处理时的平衡的动态性很强;油气界面调整不够准确,即过低而引起;分离器工作压力过低;出油、出水管线不畅,造成堵塞;三相分离器出现机械故障。 三相分离器产生油串气现象的解决方法和注意事项: 三相分离器产生油串气现象时,首先要紧急停压缩机,之后清扫三相分离器冷凝器中所有的原油,在清理压缩机中的原油,最后调整油水界面,使高效三相分离器再次达到平衡,投入使用。 2.三相分离器压力过低。即分离器的压力低于0.15Mpa 三相分离器压力过低时,分离器分离出的油压不进入稳定塔中;分离出的水压不进自然沉降罐;还有可能引起压缩机停机;分离效果不好,油水界面混乱,容易造成水串油现象。 引起三相分离器压力过低的原因有:采油区来液量小、含油气比例太小;机械故障,一般表现为漏气。
UASB工作原理UASB反应器中的厌氧反应过程与其他厌氧生物处理工艺一样,包括水解,酸化,产乙酸和产甲烷等。通过不同的微生物参与底物的转化过程而将底物转化为最终产物--沼气、水等无机物。在厌氧消化反应过程中参与反应的厌氧微生物主要有以下几种:①水解-发酵(酸化)细菌,它们将复杂结构的底物水解发酵成各种有机酸,乙醇,糖类,氢和二氧化碳;②乙酸化细菌,它们将第一步水解发酵的产物转化为氢、乙酸和二氧化碳;③产甲烷菌,它们将简单的底物如乙酸、甲醇和二氧化碳、氢等转化为甲烷UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沿着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
1、厌氧颗粒污泥的制备对颗粒污泥或絮状污泥进行接种,接种后密封在恒温水浴中保存待用。2、加入营养液及微量元素向密闭的反应器中加入制备好的厌氧颗粒污泥,再加入营养液到达指定的刻度,所述营养液湖北定制厌氧折流板反应器包括必须营养液和微童元素物质。3、设置厌氧颗粒污泥培养条件开启设置在所述反应器内的搅拌装置,调整转速进行搅拌,采用定向搅拌,同时将所述反应器内废水的PH值控制在6.5~8. 2之间,温度控制在25~55C之间,并使氧化还原电位值控制在小于或等于-350mV,盐度小于0000mg/14、排定制厌氧折流板反应器制造商泥在反应过程中如出现污泥膨胀悬浮,则关闭所述搅拌装置静置5~ 15分钟,通过设置在所述反应器上的第一阀]将腾胀污泥排出:当厌氧颗粒污泥粒径达到3~7mm,色泽灰黑色,关闭所述搅拌装置静置10~ 30分钟,打开设置在所述反应器上的第二阀门,将污泥颗粒排出。
IC 有如下几大特点:a、容积负荷率高,水力停留时间短IC反应器生物量大(可达到30~50g/L),污泥龄长。特别是由于存在着内、外循环,传质效果好。处理高浓度有机污水,进水容积负荷率可达 5~20kgCOD/m3·d。b、抗冲击负荷强在IC反应器中,当COD负荷增加时,沼气的产生量随之增加,内循环的气提增大。处理高浓度污水时,循环流量可达进水流量的10~20倍,污水中高浓度和有害物质得到充分稀释,大大降低有害程度,从而提高了反应器的耐冲击负荷能力;当COD负荷较低时,沼气产量也低,从而形成较低的内循环流。因此,内循环实际为反应器起到了自动平衡COD冲击负荷的作用。c、避免了固形物沉积有一些污水中含有大量的悬浮物质,会在 UASB 等流速较慢的反应器内发生累积,将厌氧污泥逐渐置换,最终使厌氧反应器的运行效果恶化乃至失效。而在IC 反应器中,高的液体和气体上升流速,将悬浮物冲击出反应器。d、基建投资省和占地面积小由于IC反应器的容积负荷率比普通的UASB反应器要高3~4倍以上,所以IC 反应器的体积为普通UASB反应器的1/4~1/3 左右,而且有很大的高径比,占地面积特别省,可降低反应器的基建投资,非常使用于占地面积紧张的厂家采用。
EGSB厌氧反应罐即膨胀颗粒污泥床反应器,是第三代厌氧反应器,构造特点是具有很大的高径比。从外观上看,EGSB反应器由第一厌氧反应室和第二厌氧反应室叠加而成,每个厌氧反应器的顶部各设一个气-固-液三相分离器。 EGSB厌氧反应罐的特点:容积负荷率高,水力停留时间短EGSB厌氧反应罐生物量大(可达到60g/L),污泥龄长。特别是由于存在着内、外循环,传质效果好。处理高浓度有机废水,进水容积负荷率可达15~30kgCOD/m3•d。EGSB厌氧反应罐应用于大型淀粉厂、酒精废水、生物制药厂、农药废水、造纸废水、化工废水处理系统。主要设备有: EGSB三相分离器(两层)、气水分离器、泥水分离器、水封器、循环系统等。其构造与UASB反应器有相似之处,可以分为进水配水系统、反应区、三相分离区和出水渠系统。与UASB反应器不同之处是,EGSB反应器设有专门的出水回流系统。EGSB反应器一般为圆柱状塔形,特点是具有很大的高径比,一般可达3~5,装置反应器的高度可达15~20米。颗粒污泥的膨胀床改善了废水中有机物与微生物之间的接触,强化了传质效果,提高了反应器的生化反应速度,从而大大提高了反应器的处理效能。厌氧膨胀颗粒床反应器( Expanded Granular Sludge Bed , 简称EGSB) 是在上流式厌氧污泥床(UASB) 反应器的研究成果的基础上,开发的第三代超高效厌氧反应器,该种类型反应器除具有UASB反应器的全部特性外,还具有以下特征:①高的液体表面上升流速和COD去除负荷;②厌氧污泥颗粒粒径较大,反应器抗冲击负荷能力强;③反应器为塔形结构设计,具有较高的高径比,占地面积小;④可用于SS含量高的和对微生物有毒性的废水处理;⑤主要用于高浓度有机废水处理。EGSB厌氧反应器(内部根据功能划分为混合区、膨胀区、沉淀区和集气部分。在多个工程实践的基础上优化布水系统和三相分离器,使得布水更加合理,三相分离器更加理想,确保了反应器在稳定的运行中获得更高的容积负荷。EGSB厌氧反应器是继UASB之后的一种新型的厌氧反应器。它由布水器、三相分离器、集气室及外部进水系统组成一个完整系统。废水经过污水泵进入EGSB厌氧反应器的有机物充分与厌氧罐底部的污泥接触,大部分被处理吸收。高水力负荷和高产气负荷使污泥与有机物充分混合,污泥处于充分的膨胀状态,传质速率高,大大提高了厌氧反应速率和有机负荷。所产生的沼气上升到顶部经过三相分离器把污泥、污水、沼气分离开来。 从实际运行情况看,EGSB厌氧反应器对有机物的去除率高达85%以上,运行稳定,出水稳定,此EGSB厌氧技术已经非常成熟,已经广泛运用到国内中大型企业。