联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
IC厌氧反应器其布水系统和三相分离器为核心技术,拥有核心技术的我们为您提供更权威的技术支持。厌氧反应器是一种高效的多级内循环厌氧反应器;它具有占地少、有机负荷高、抗冲击能力更强,性能更稳定、操作管理更简单的特点。厌氧反应器适用于有机高浓度废水处理,如,玉米淀粉废水处理、柠檬酸废水处理、啤酒废水处理、土豆加工废水处理、酒精废水处理、食品废水处理、中药提取废水处理、制药废水处理等高有机COD废水的处理。IC厌氧反应器特点高容积负荷率:IC厌氧罐由于存在着强大的内循环、传质效果好、生物量大。其进水负荷率远比普通的UASB反应罐高,一般可高出3倍左右。处理高浓度有机废水,当COD为10000-15000mg/1时,容积负荷率可达15-30kgCOD/m3。抗冲击负荷能力强:由于IC厌氧罐实现了自身的内循环,循环量可达进水的10-20倍。因为循环水与进水在反应罐底部充分混合,使反应罐底部的有机物浓度降低,从而提高了反应罐的耐冲击负荷能力;同时大水量也使底部污泥得以膨胀,保证了废水中的有机物与微生物的充分接触反应,提高了处理负荷。出水稳定性能好:因为IC厌氧罐相当上下两个UASB反应罐的串联运行,下面一个反应罐具有很高的有机负荷率,起"粗"处理作用,上面一个反应罐的负荷低,起"精"处理作用,使出水水质好且稳定。
调整出气阀门,使三相分离器中压力恢复,达到分离器的工作压力标准。同时在日常操作中的注意事项为:监控数据,观察稳定塔和自然沉降罐的液面是否下降,观察分离器的油水界面。 3.高效三相分离器压力控制失灵,造成压力大幅度波动 由于各种原因,使自动放气系承德定制EGSB厌氧反应器统失灵,操作人员应根据具体情况,采取相应措施进行处理;若控制阀关闭,分离器压力超过0.60Mpa时还不能打开,操作人员应及时打开控制阀旁通,使压力控制在0.25~0.35Mpa 五、结论 简单介绍三相分离器日常操作中出现的问题的分析以及在操作中要注意的问题: 1.原油处理过程中的高效三项分离器液面和压力控制为关键过程,同时高效三项分离器的平衡是一个动态平衡,所以一定要做好数据监控,并且自然沉定制EGSB厌氧反应器制造商降罐液位增减的速度,原油稳定塔的液面及其操作压力等参数也是三项分离器平稳运行与否的重要依据。 2.三相分离中油水界面的控制非常重要,界面过高,减少了油相停留时间,缩短了油中水珠的聚结时间,会增加油中含水率,但水在设备内的停留时间增大,利于水中含油减少;界面过低,利于油中含水降低,但不利于水中油珠聚结,会造成水中含油增高。因此控制好油水界面对三相分离器的分离效果及其重要。
废水厌氧生物处理是环境工程与能源工程中的一项重要技术,是有机废水强有力的处理方法之一,过去,它多用于城市污水厂的污泥、有机废料及其部分高浓度有机废水的处理,在建筑物形式上主要采用普通消化池,由于存在水力停留时间长、有机负荷低等缺点,较长时间限制了它在废水处理中的应用,20世纪70年代以来,世界能源短缺日益突出,能生产能源的废水厌氧技术受到重视,研究与实践不断深入,开发了各种新型工艺与设备,大幅度地提高了厌氧反应器内活性污泥的持有量,使处理时间大大缩短,效率提高。● 应用范围广● 能耗低● 负荷高● 剩余污泥量少● 氮、磷营养需要量较少● 厌氧处理过程有一定杀菌作用,可以杀死废水与污水中的寄生虫、病毒等● 厌氧活性污泥可以长期储存,厌氧反应器可以季节性或间歇性运转。三个方面的缺点:● 厌氧微生物增殖缓慢,因而厌氧设备启动和处理时间比好氧设备大● 出水往往需要进一步处理,故一般在厌氧处理后串联好氧处理● 厌氧处理系统操作控制因素较为复杂
1、厌氧反应器内出现泡沫、化学沉淀等不良现象的原因是什么? 厌氧反应器中有时会产生大量泡沫,泡沫呈半液半固状,严重时可充满气相空间并带入沼气管道,导致沼气系统的运行困难。 产生泡沫的主要原因是厌氧系统运行不稳定,因为泡沫主要是由于CO2产量太大形成的,当反应器内温度波动或负荷发生突变等情况发生时,均可导致系统运行的不稳定和CO2的产量增加,进而导致泡沫的产生。如果将运行不稳定因素及时排除,泡沫现象一般也会随之消失。在厌氧污泥培养初期,由于CO2产量大而甲烷产量少,也会出现泡沫,随着甲烷菌的培养成熟,CO2产量减少,泡沫一般也会逐渐消失。进水中含有蛋白质是产生泡沫的一个原因,而微生物本身新陈代谢过程中产生的一些中间产物也会降低水的表面张力而生成气泡。厌氧生物处理过程中大量产气会产生类似好氧处理的曝气作用而形成气泡问题,负荷突然升高所带来的产气量突然增加也可能出现泡沫问题。碳酸钙(CaCO3)沉淀:处理废水钙含量高或利用石灰补充碱度,都会增加产生碳酸钙沉淀的可能性。高浓度的碳酸氢盐和磷酸盐都有利于钙的沉淀。鸟粪石(MgNH4PO4)沉淀:进水中含有较高浓度的溶解性正磷酸盐、氨氮和 镁离子时,就会生成鸟粪石沉淀。厌氧处理系统鸟粪石沉淀主要在管道弯头、水泵入口和二沉池进出口等处出现。2、厌氧生物处理的三个阶段是怎样的?理论研究认为三个阶段,即厌氧消化过程分为水解发酵阶段、产乙酸产氢阶段、产甲烷阶段三部分。
该设备内下设气、固、液三相分离器,有给出五大特性:a、选用耐腐蚀性高、刚度好、耐温性好的改性材料PP板才;b、下设单脉冲沼液消除泡沫塑料、浮渣的设备,分离出来实际效果佳;c、带集气室、沼液管及出入口活接头等;d、机器设备预制构件挤压成型,节省安装时间;e、在厌氧反应器中三相分离器承担挺大的沼液工作压力,为了防止电焊焊接部位裂开或板才胀裂,在重要支承位置安裝筋板,确保了工程施工质量和系统优化。能严控反应器内水、气、固的均衡,进而确保反应器高效率平稳运作。原理:随之废水与淤泥相触碰而产生水解酸化反映,造成沼液(汽体是甲烷和co2)造成淤泥床围压。在淤泥床造成的汽体中有一小部分粘附在淤泥颗粒物上,随意汽泡和粘附在淤泥颗粒物上的汽泡升高至反应器的顶端。淤泥颗粒物升高撞击到脱气隔板的底端,这造成粘附的汽泡放出;脱气的淤泥颗粒物沉定返回淤泥床的表层。随意汽体和从淤泥颗粒物放出的汽体被搜集在反应器顶端的集气房间内。液體中包括某些剩下的液体和生物颗粒进到到沉淀室内,剩下液体和生物颗粒从液體中分离出来并根据反射板落返回淤泥层的上边。分离出来汽体、液体后的液體再次升高,从出水堰溢流式,经集不锈钢水槽排出来。沼液集聚于三相分离器顶端,根据呼吸道排出来。低浓度有机化学生产废水历经厌氧反应器归一化处理后,有机化合物获得很多除去,COD急剧降低。
IC和UASB是厌氧反应器中最常见的两种结构形式。在之前的文章中,我们详细介绍了厌氧反应器-IC的结构,今天我们就来讲一讲UASB的结构和原理。1. UASB厌氧反应器的原理在UASB反应器中,废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程中。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这有利于颗粒污泥的形成和维持。在污泥层形成的一些气体附着在污泥颗粒上,向反应器顶部上升,上升到表面的污泥撞击三相分离器气体发射板的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,而气体则被收集到三相分离器的集气室。在集气室单元缝隙之下设置挡板(气体反射器),其作用是为了防止沼气气泡进入沉淀区,否则将引起沉淀区的紊动,而阻碍颗粒沉淀。包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。由于三相分离器斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。同时随着流速降低,污泥絮体在沉淀区可以絮凝和沉淀。累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,而滑回反应区,这部分污泥又将与进水有机物发生反应。2. UASB反应器的结构USAB反应器包括进水和配水系统、反应器的池体和三相分离器。如果考虑整个厌氧系统,还应该包括沼气收集和利用系统。但是由于沼气利用的途径和目标不确定,其利用系统也有很大的差别。在USAB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体颗粒的沉淀效果,三相分离器最主要的目的就是尽可能有效地分离从污泥床中产生的沼气。特别是在高负荷的情况下,在集气室下面设置反射板,是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体紊动。