联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
EGSB、UASB等所有的厌氧内部的三相分离器等是指反应器内的三相分离器造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。对污泥床的正常运行和获得良好的出水水质起十分重要的作用; 1、沉淀区的表面水力负荷<1.0m/h; 2、三相分离器集气罩顶以上的覆盖水深可采用0.5~1.0m; 3、沉淀区四壁倾斜角度应在45º~60º之间,使污泥不积聚,尽快落入反应区内; 4、沉淀区斜面高度约为0.5~1.0m; 5、进入沉淀区前,沉淀槽底缝隙的流速≤2m/h; 1、沉淀区的设计主要考虑沉淀区的表面积和水深这两个因素。由于沉淀区的厌氧污泥与出水中残余的有机物尚能起生化反应,在沉淀区仍有少量的沼气产生,对沉淀区的固液分离有些干扰,因此在处理高浓度有机废水时,表面负荷率应采用得小一些,一般表面负荷率<1.0m³/h,且沉淀区进水口的水流上升速度应小于2m/s。为获得良好的固液分离效果,沉淀区斜面的高建议为0.5~1.0m,斜面与水平方向的夹角在45°~60°之间,且光滑,以利于污泥下滑返回反应区。总沉淀水深应≥1.5m,水力停留时间介于1.5~2h,分离气体的挡板与分离器壁重叠在20mm以上;以上条件如能满足,则可达到良好的分离效果。2、回流缝的设计为了使回流缝的水流稳定,回流缝中水流的速度不能太高,以确保良好的气、固、液三相的分离效果,并使沉淀区沉降下来的污泥能迅速顺利地回流至反应区,回流缝中水流速度一般<2m/s。为达到气液分离目的,气封与沉淀区的斜面必须重叠。重叠的水平距离越大,气体的分离效果越好,对沉淀区固液分离效果的影响越小,重叠部分一般在0.1~0.2m之间。3、气液分离设计确定了三相分离器的基本尺寸后,还应校核气液分离效果是否满足要求。为了保证气泡不进人沉淀室,就必须使回流缝宽度和气液分离斜面的长度,以及气泡上升速度满足一定的关系,以使气泡合成速度方向的指向不低于沉淀室的缝隙口边缘点。气泡分离而不进入沉淀室的必要条件是:vb/va>BC/AB。气泡垂直上升速度vb的大小与碰撞系数β,气泡直径dg(cm),水温T(℃),废水的密度ρl(g·cm-3)和气体的密度ρg(g/cm³),废水的动力粘滞系数μ(g·cm-1s-1)和运动粘滞系数γ(cm2·s-1)等因素有关。当雷诺数Re<2时,气泡的上升流速可用斯托克斯公式计算:vb=β×g(ρl-ρg)d2g÷(18×μ)。
1) 反应器的体积和高度 采用水力停留时间进行设计时,体积(V)按公式(1)或(2)计算。选择反应器高度的原则是设计、运行和上综合考虑的结果。从设计、运行方面考虑:高度会影响上升流速,高流速增加系统扰动和污泥与进水之间的接触。但流速过高会引起污泥流失,为保持足够多的污泥,上升流速不能超过一定的限值,从而使反应器的高度受到限制;高度与CO2溶解度有关,反应器越高溶解的CO2浓度越高,因此,pH值越低。如pH值低于最优值,会危害系统的效率。从经济上考虑: 土方工程随池深增加而增加,但占地面积则相反;考虑当地的气候和地形条件,一般将反应器建造在半地下减少建筑和保温费用。最经济的反应器高度(深度)一般是在4到6m之间,并且在大多数情况下这也是系统最优的运行范围。2) 反应器的升流速度 对于UASB反应器还有其他的流速关系(图2)。对于日平均上升流速的推荐值见表3,应该注意对短时间(如2~6h)的高峰值是可以承受的(即暂时的高峰流量可以接收)。表3 UASB和EGSB允许上升流速(平均日流量) Vr=0.25~3.0m/h0.75~1.0m/h 颗粒污泥絮状污泥 Vs≤1.5m/h颗粒污泥 Vo≤12m/h Vg=1m/h3) 反应器的截面积和反应器的长、宽(或直径)在确定反应器的容积和高度(H)之后,可确定反应器的截面积(A)。从而确定反应器的长和宽,在同样的面积下正方形池的周长比矩形池要小,矩形UASB需要更多的建筑材料。以表面积为600m2的反应器为例,30×20m的反应器与15m×40m的反应器周长相差10%,这意味着建筑费用要增加10%。但从布水均匀性考虑,矩形在长/宽比较大较为合适。从布水均匀性和经济性考虑,矩形池在长/宽比在2:1以下较为合适。长/宽比在4:1时费用增加十分显著。圆形反应器在同样的面积下,其周长比正方形的少12%。但这一优点仅仅在采用单个池子时才成立。当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。对于采用公共壁的矩形反应器,池型的长宽比对造价也有较大的影响。如果不考虑其他因素,这是一个在设计中需要优化的参数。
1、有机负荷高厌氧反应器的有机负荷是UASB有机负荷的2-5倍,UASB的有机负荷通常为3-8kgCOD/m³·d,而EGSB的有机负荷可达6-25kgCOD/ m³·d。2、占地面积少因EGSB有机负荷比UASB高,EGSB高径比>UASB高径比,因此处理同样规模的有机废水,EGSB所占的地面面积远远少于UASB厌氧反应器的占地面积。3、运行稳定东营定制厌氧颗粒污泥EGSB厌氧反应器采用的是厌氧颗粒污泥,污泥的沉降速度大于污水的上升速度,因此EGSB厌氧反应器很少会跑泥,因此运行稳定。4、EGSB运行控制1)温度:中温厌氧反应的最适宜温度范围为35~38°C,运行过程中的温度波动≤2°C/d。 2)pH值:正常情况下进水pH值控制在6.5以上,出水6.8~7.2。 3)其他指标:VFA、产气量、HCO3-碱度、N、P等营养元素,定制厌氧颗粒污泥制造商有毒物质。5、耐高负荷进水浓度的突然增加或进水量的突然改变,都会对厌氧反应器造成负荷冲击。EGSB因其内循环的作用,瞬间的高浓度的废水进入反应器后,产气量增大,气提量也会增大,从而内循环量大,大的内循环能将高浓度的废水迅速的稀释,从而减少了有机负荷变化对反应器的冲击。
三相分离器, 关键有集气罩、集气室、集气管、出水堰等构成。其原理为废水与水解酸化淤泥相触碰,根据病菌水解酸化反映造成沼液(汽体关键成分为甲烷),随意汽泡和粘附在淤泥颗粒物上的汽泡升高厌氧应器的顶端三相分离器。升高碰撞集气罩反射板上,使粘附的汽泡放出;脱气的淤泥颗粒物沉定返回厌氧反应器下边淤泥床内。汽体被搜集在反应器顶端的集气房间内,根据气管排出来。三相分离器特性:a、能搜集从分离设备下的反映室造成的沼液,沼液体系排风压 3kPa~5kPa; 促使在分离设备之中的悬浮固体沉淀出来。b、集气罩和集气室中间下设浮渣分离出来设备,解决了三相分离器内浮渣无法除去的难题。c、可以融入反应器较高的升高水流量,不危害气、液、固的三相分离实际效果。b、在机器设备挤压成型时选用与众不同的承插构造的挤压成型方法,在重要支承部位安裝筋板,确保了工程施工质量和系统优化。具备分离出来好用,并充分考虑泡沫塑料和浮渣的危害及消除。控制模块式拼装构造,有利于安裝,工程施工工期短。采于橡胶制品,防锈特性好,使用期长。
三相分离器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flow Anaerobic Sludge Bed/Blanket)。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。因水流和气泡的搅动,污泥床之上有一个污泥悬浮层。反应器上部有设有三相分离器,用以分离消化气、消化液和污泥颗粒。消化气自反应器顶部导出;污泥颗粒自动滑落沉降至反应器底部的污泥床;消化液从澄清区出水。UASB负荷能力很大,适用于高浓度有机废水的处理。运行良好的UASB有很高的有机污染物去除率,不需要搅拌,能适应较大幅度的负荷冲击、温度和pH变化。工作原理反应器中的厌氧反应过程与其他厌氧生物处理工艺一样,包括水解,酸化,产乙酸和产甲烷等。通过不同的微生物参与底物的转化过程而将底物转化为产物——沼气、水等无机物在厌氧消化反应过程中参与反应的厌氧微生物主要有以下几种:①水解—发酵(酸化)细菌,它们将复杂结构的底物水解发酵成各种有机酸,乙醇,糖类,氢和二氧化碳;②乙酸化细菌,它们将一步水解发酵的产物转化为氢乙酸和二氧化碳;③产甲烷菌,它们将简单的底物如乙酸、甲醇和二氧化碳、氢等转化为甲烷UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。
废气处理的方法有分为稀释扩散法、水吸收法、曝气式脱臭法、催化氧化法、低温等离子稀释扩散法 原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低 产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质 适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。 催化氧化法 原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 低温等离子法 原理:低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 低温等离子体空气净化设备能够显著治理的污染有:VOC、恶臭气体、异味气体、油烟、粉尘,也可用于消毒杀菌。低温等离子体技术是一种全新的净化过程,不需要任何添加剂、不产生废水、废渣,不会导致二次污染。