联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
IC厌氧反应器,即内循环式颗粒污泥反应器,作为改进型的 UASB 反应器,由于采用较大的高度-直径比和大的回流比,在高的上流速度和产气的搅动下,污水与颗粒污泥间的接触更充分,使N-IC内基质向颗粒污泥内部传递优于混合强度低的 UASB 反应器。颗粒污泥循环使反应器内生物相达到完全流化的状态,降低了能源消耗。三相分离器是N-IC反应器最具特色和最重要的装置。N-IC内设置了两层五级三相离器,它们同时具有以下功能:1)能收集从分离器下的反应室产生的沼气,沼气系统排气压 3kPa~5kPa; 使得在分离器之上的悬浮物沉淀下来。2)能够适应N-IC反应器高的上升流速,不影响气、液、固分离效果。3)将N-IC反应器隔成两个反应室,使得反应器的实际处理能力大大增高,抗冲击负荷增强,保证良好的运行稳定性能。布水系统是厌氧反应器的关键配置,它对于形成污泥与进水间充分的接触、最大限度地利用反应器的污泥是十分重要的。布水系统兼有配水和水力搅动作用,为了保证这两个作用的实现,需要满足如下原则:1)进水装置的设计使分配到各点的流量相同;2)进水管不易堵塞;3)尽可能满足污泥床水力搅拌的需要,保证进水有机物与污泥迅速混合,防止局部产生酸化现象。
一般来说,对于以产甲烷为主要目的的厌氧过程要求pH值在6.5~8.0之间,废水碱度偏低或运行负荷过高时,会引起反应器内挥发酸积累,导致产甲烷菌活力丧失而产酸菌大量繁殖,持续过久时,会导致产甲烷菌活力丧失殆尽而产乙酸菌大量繁殖,引起反应器系统的“酸化保定定制IC反应器”。严重酸化发生后,反应器难以恢复至原有状态。厌氧消化作用失去平衡时会显示出如下“症状”:①沼气产量下降;②沼气中甲烷含量降低;③消化液VFA增高;④有机物去除率下降;⑤消化液pH值下降;⑥碳酸盐碱度与总碱度之间的差值明显增加;⑦洗出的颗粒污泥颜色变浅没有光泽;⑧反应器出水产生明显异味;⑨ORP(氧化还原电位)值上升等。1、厌氧反应器酸化的原因厌氧反应器超负荷运行我们都知道,在运行厌氧反应器的各项工艺控制条件中,污泥负荷是一个非常重要的控制参数。污泥负荷是指单位时间内施加给单位质量厌氧污泥的有机物的量,以kgSCOD/kgVS.d表示。对于某种废水,厌氧污泥具有一个最大的限制值,当运行的负荷超过该最大限制值,则意味着超负荷运行。虽然该限制值从污泥负荷的概念上理解是针对整个厌氧污泥,实际上真正的对象是针对厌氧污泥中的产甲烷菌。超负荷运行,实际上就是负荷量超过了厌氧污泥中产甲烷菌的产甲烷能力,而此时的负荷量往往并没有超过厌氧污泥的水解酸化能力。所以就出现了反应器的VFA开始累积,浓度不断上升,出水pH值降低,去除效率下降这种污泥酸化现象的发生。所以,了解定制IC反应器厂家厌氧反应器的污泥总量,并以此来维持合理的运行负荷,是预防厌氧反应器出现酸化的重要手段之一。2、pH值、温度等运行控制条件出现严重偏差由于厌氧污泥中产甲烷菌对其生存条件的要求比水解酸化菌苛刻的多,所以当反应器的pH值或温度的控制范围出现很大的偏差,就会使产甲烷菌的产甲烷能力受到严重影响,而水解酸化菌所受到的影响却远远小于产甲烷菌,其结果同样会导致厌氧反应器发生酸化现象。
IC厌氧反应器其布水系统和三相分离器为核心技术,拥有核心技术的我们为您提供更权威的技术支持。厌氧反应器是一种高效的多级内循环厌氧反应器;它具有占地少、有机负荷高、抗冲击能力更强,性能更稳定、操作管理更简单的特点。厌氧反应器适用于有机高浓度废水处理,如,玉米淀粉废水处理、柠檬酸废水处理、啤酒废水处理、土豆加工废水处理、酒精废水处理、食品废水处理、中药提取废水处理、制药废水处理等高有机COD废水的处理。IC厌氧反应器特点高容积负荷率:IC厌氧罐由于存在着强大的内循环、传质效果好、生物量大。其进水负荷率远比普通的UASB反应罐高,一般可高出3倍左右。处理高浓度有机废水,当COD为10000-15000mg/1时,容积负荷率可达15-30kgCOD/m3。抗冲击负荷能力强:由于IC厌氧罐实现了自身的内循环,循环量可达进水的10-20倍。因为循环水与进水在反应罐底部充分混合,使反应罐底部的有机物浓度降低,从而提高了反应罐的耐冲击负荷能力;同时大水量也使底部污泥得以膨胀,保证了废水中的有机物与微生物的充分接触反应,提高了处理负荷。出水稳定性能好:因为IC厌氧罐相当上下两个UASB反应罐的串联运行,下面一个反应罐具有很高的有机负荷率,起"粗"处理作用,上面一个反应罐的负荷低,起"精"处理作用,使出水水质好且稳定。
1、 保持了钢制三相分离器的结构及分离效果的前提下,对整体材料进行了革命 ,使三相分离器具有优秀的耐腐蚀性能。2、 设备标准化模块设计,适合安装。3、 增强型工程塑料材质,可加工性强,结构稳定性好,再加工、维修方便。4、 设备集气效率、截固率高、气密性好。5、 三相分离器结构尺寸合理,无污泥流失,可保证厌氧反应器有足够高的反应负荷。6、 启动速度快,不会出现断流、短流等现象。我公司在三相分离器以及厌氧反应器的技术上处于高水平,可以承接适合各种高浓度有机废水的厌氧反应器以及及三相分离器制作工程。并可为客户污水处理整体工程的设计、生产、安装提供一条龙服务。
一、三相分离器结构及工作原理 1、三相分离器的工艺流程 所有来油经游离水三项分离器分离再添加破乳剂进入换热器加热升温至70~75℃然后进入高效三相分离器进行分离,分离器压力控制在0.15~0.20Mpa,油液面控制在80~100cm、水液面控制在100~120cm,除油器进出口压差控制在0.2Mpa,处理合格后的原油含水率控制在2%左右经稳定塔闪蒸稳定后进入原油储罐,待含水小于0.8%后外输至管道。 2、三相分离器工作原理 各采油队来液由分离器进液管进入进液舱,容积增大,流速降低,缓冲降压,气体随压力的降低自然逸出上浮,在进液舱油、气、水靠比重差进行初步分离。分离后的水从底部通道进入沉降室。经过分离的液体经过波纹板时,由于接触面积增加,不锈钢波纹板又具有亲水憎油的特性,再进行油、气、水的分离。随后进入沉降室,靠油水比重差进行分离;通过加热使液体温度增加,增加油水分子碰撞机会,加大了油水比重差;小油滴和小水滴碰撞机会多聚结为大油滴和大水滴,加速油水分离速度;油上浮、水下沉实现油、水进一步分离;油、气和水通过出口管线排出。 2.1重力沉降分离 分离器正常工作时,液面要求控制在1/2~2/3之间。在分离器的下部分是油水分离区。经过一定的沉降时间,利用油和水的比重差实现分离。 2.2 离心分离 油井生产出来的油气混合物在井口剩余压力的作用下,从油气分离器进液管喷到碟形板上使液体和气体,在离心力的作用下气体向上,而液体(混合)比重大向下沉降在斜板上,向下流动时,还有一部分气体向气出口方向流去,当气体流到削泡器处,需改变气体的流动方向,气体比重小,在气体中还有一部分大于100微米的液珠与消泡器碰撞掉下沉降到液面上,同时液面上的油泡碰撞在削泡器,使气体向上流动,完成了离心的初步气液分离 2.3碰撞分离 当离心分离出来的气体进入分离器上面除雾器,气体被迫绕流,由于油雾的密度大,在气体流速加快时,雾状液体惯性力增大,不能完全的随气流改变方向,而除雾器网状厚度300mm截面孔隙只有0.3mm小孔道,雾滴随气流提高速度,获得惯性能量,气体在除雾器中不断的改变方向,反复改变速度,就连续造成雾滴与结构表面碰撞并吸附在除雾器网上。吸附在除雾器网上油雾逐渐累起来,由大变小,沿结构垂直面流下,从而完成了碰撞分离。
① 三相分离器三相分离器是IC反应器最具特色和最重要的装置。IC内设置了两层五级三相离器,它们同时具有以下功能:a、能收集从分离器下的反应室产生的沼气,沼气系统排气压 3kPa~5kPa; 使得在分离器之上的悬浮物沉淀下来。b、能够适应IC反应器较高的上升流速,不影响气、液、固的三相分离效果。c、将IC反应器隔成两个反应室,使得反应器的实际处理能力大大增高,抗冲击负荷增强,保证良好的运行稳定性能。为保证三相分离器的使用寿命和耐腐蚀性,我公司一直采用耐腐性好、刚性好、耐热性好的改性PP板材,设备成套加工,节约安装时间。② 布水系统布水系统是厌氧反应器的关键配置,它对于形成污泥与进水间充分的接触、最大限度地利用反应器的污泥是十分重要的。布水系统兼有配水和水力搅动作用,为了保证这两个作用的实现,需要满足如下原则:a、进水装置的设计使分配到各点的流量相同;b、进水管不易堵塞;c、尽可能满足污泥床水力搅拌的需要,保证进水有机物与污泥迅速混合,防止局部产生酸化现象。同时为保障布水系统的耐腐蚀性,延长使用寿命,我公司采用304不锈钢进行制作。布水方式采用旋混布水方式,具有布水均匀性好、不易堵塞。③ 汽水分离器汽水分离器位于罐顶,是气体、液体、固体快速分离的装置,在结构上采用旋流分离原理,独特的分离角度,能非常好地保障系统的高效稳定运行。