联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
EGSB、UASB等所有的厌氧内部的三相分离器等是指反应器内的三相分离器造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。对污泥床的正常运行和获得良好的出水水质起十分重要的作用; 1、沉淀区的表面水力负荷<1.0m/h; 2、三相分离器集气罩顶以上的覆盖水深可采用0.5~1.0m; 3、沉淀区四壁倾斜角度应在45º~60º之间,使污泥不积聚,尽快落入反应区内; 4、沉淀区斜面高度约为0.5~1.0m; 5、进入沉淀区前,沉淀槽底缝隙的流速≤2m/h; 1、沉淀区的设计主要考虑沉淀区的表面积和水深这两个因素。由于沉淀区的厌氧污泥与出水中残余的有机物尚能起生化反应,在沉淀区仍有少量的沼气产生,对沉淀区的固液分离有些干扰,因此在处理高浓度有机废水时,表面负荷率应采用得小一些,一般表面负荷率<1.0m³/h,且沉淀区进水口的水流上升速度应小于2m/s。为获得良好的固液分离效果,沉淀区斜面的高建议为0.5~1.0m,斜面与水平方向的夹角在45°~60°之间,且光滑,以利于污泥下滑返回反应区。总沉淀水深应≥1.5m,水力停留时间介于1.5~2h,分离气体的挡板与分离器壁重叠在20mm以上;以上条件如能满足,则可达到良好的分离效果。2、回流缝的设计为了使回流缝的水流稳定,回流缝中水流的速度不能太高,以确保良好的气、固、液三相的分离效果,并使沉淀区沉降下来的污泥能迅速顺利地回流至反应区,回流缝中水流速度一般<2m/s。为达到气液分离目的,气封与沉淀区的斜面必须重叠。重叠的水平距离越大,气体的分离效果越好,对沉淀区固液分离效果的影响越小,重叠部分一般在0.1~0.2m之间。3、气液分离设计确定了三相分离器的基本尺寸后,还应校核气液分离效果是否满足要求。为了保证气泡不进人沉淀室,就必须使回流缝宽度和气液分离斜面的长度,以及气泡上升速度满足一定的关系,以使气泡合成速度方向的指向不低于沉淀室的缝隙口边缘点。气泡分离而不进入沉淀室的必要条件是:vb/va>BC/AB。气泡垂直上升速度vb的大小与碰撞系数β,气泡直径dg(cm),水温T(℃),废水的密度ρl(g·cm-3)和气体的密度ρg(g/cm³),废水的动力粘滞系数μ(g·cm-1s-1)和运动粘滞系数γ(cm2·s-1)等因素有关。当雷诺数Re<2时,气泡的上升流速可用斯托克斯公式计算:vb=β×g(ρl-ρg)d2g÷(18×μ)。
调整出气阀门,使三相分离器中压力恢复,达到分离器的工作压力标准。同时在日常操作中的注意事项为:监控数据,观察稳定塔和自然沉降罐的液面是否下降,观察分离器的油水界面。 3.高效三相分离器压力控制失灵,造成压力大幅度波动 由于各种原因,使自动放气系统失灵,操作人员应根据具体情况,采取相应措施进行处理;若控制阀关闭,分离器压力超过0.60Mpa时还不能打开,操作人员应及时打开控制阀旁通,使压力控制在0.25~0.35Mpa 五、结论 简单介绍三相分离器日常操作中出现的问题的分析以及在操作中要注意的问题: 1.原油处理过程中的高效三项分离器液面和压力控制为关键过程,同时高效三项分离器的平衡是一个动态平衡,所以一定要做好数据监控,并且自然沉降罐液位增减的速度,原油稳定塔的液面及其操作压力等参数也是三项分离器平稳运行与否的重要依据。 2.三相分离中油水界面的控制非常重要,界面过高,减少了油相停留时间,缩短了油中水珠的聚结时间,会增加油中含水率,但水在设备内的停留时间增大,利于水中含油减少;界面过低,利于油中含水降低,但不利于水中油珠聚结,会造成水中含油增高。因此控制好油水界面对三相分离器的分离效果及其重要。
其主要功能是:1.将进入反应器的原废水均匀地分配到反应器整个横断面,并均匀上升;2.起到水力搅拌的作用。这都是反应器高效运行的关键环节。〖反应区〗是UASB的主要部位,包括颗粒污泥区和悬浮污泥区。在反应区内存留大量厌氧污泥,具有良好凝聚和沉淀性能的污泥在池底部形成颗粒污泥层。废水从污泥床底部流入,与颗粒污泥混合接触,污泥中的微生物分解有机物,同时产生的微小沼气气泡不断放出。微小气泡上升过程中,不断合并,逐渐形成较大的气泡。在颗粒污泥层的上部,由于沼气的搅动,形成一个污泥浓度较小的悬浮污泥层。〖三相分离器〗由沉淀区、回流缝和气封组成,其功能是将气体(沼气)、固体(污泥)和液体(废水)等三相进行分离。沼气进入气室,污泥在沉淀区进行沉淀,并经回流缝回流到反应区。经沉淀澄清后的废水作为处理水排出反应器。三相分离器的分离效果将直接影响反应器的处理效果。〖气室〗也称集气罩,其功能是收集产生的沼气,并将其导出气室送往沼气柜。〖处理水排出系统〗功能是将沉淀区水面上的处理水,均匀地加以收集,并将其排出反应器。此外,在反应器内根据需要还要设置排泥系统和浮渣清除系统。
⑴ 池体不需要密闭,也不需要三相分离器,运行管理方便简单。⑵ 大分子有机物经水解酸化后,生成小分子有机物,可生化性较好,即水解酸化可以改变原污水的可生化性,从而减少反应时间和处理能耗。⑶ 水解酸化属于厌氧处理的前期,没有达到厌氧发酵的最终阶段,因而出水中也就没有厌氧发酵所产生的难闻气味,改善了污水处理厂的环境。⑷ 水解酸化反应所需时间较短,因此所需构筑物体积很小,一般与沉淀池相当,可节约基建投资。⑸ 时间酸化对固体有机物的降解效果较好,而且产生的剩余污泥很少,实现了污泥、污水一次处理,具有消化池的部分功能。5、厌氧生物处理的主要特点有哪些?⑴ 能耗较低:因为厌氧生物处理不需要供氧,能源消耗约为好氧活性污泥法的1/10,还能产生具有较高热值的甲烷气(CH4)。每去除1gCODcr可以产生0.35标准升甲烷或0.7标准升沼气。沼气的热值为22.7KJ/L,甲烷的热值为39300KJ/m3,一般天然气的热值为34300KJ/m3 。⑵ 污泥产量低:因为厌氧微生物的增殖速率比好氧微生物低得多,好氧生物处理系统每处理1kgCODcr产生的污泥量为0.25~0.6kg,而厌氧生物处理系统每处理1kgCODcr产生的污泥量只有0.02~0.18kg。⑶可对好氧生物处理系统不能降解的一些大分子有机物进行彻底降解或部分降解。⑷ 厌氧微生物对温度、PH等环境因素的变化更为敏感,运行管理好厌氧生物处理系统的难度较大。
一般来说,对于以产甲烷为主要目的的厌氧过程要求pH值在6.5~8.0之间,废水碱度偏低或运行负荷过高时,会引起反应器内挥发酸积累,导致产甲烷菌活力丧失而产酸菌大量繁殖,持续过久时,会导致产甲烷菌活力丧失殆尽而产乙酸菌大量繁殖,引起反应器系统的“酸化松原定制EGSB厌氧反应器”。严重酸化发生后,反应器难以恢复至原有状态。厌氧消化作用失去平衡时会显示出如下“症状”:①沼气产量下降;②沼气中甲烷含量降低;③消化液VFA增高;④有机物去除率下降;⑤消化液pH值下降;⑥碳酸盐碱度与总碱度之间的差值明显增加;⑦洗出的颗粒污泥颜色变浅没有光泽;⑧反应器出水产生明显异味;⑨ORP(氧化还原电位)值上升等。1、厌氧反应器酸化的原因厌氧反应器超负荷运行我们都知道,在运行厌氧反应器的各项工艺控制条件中,污泥负荷是一个非常重要的控制参数。污泥负荷是指单位时间内施加给单位质量厌氧污泥的有机物的量,以kgSCOD/kgVS.d表示。对于某种废水,厌氧污泥具有一个最大的限制值,当运行的负荷超过该最大限制值,则意味着超负荷运行。虽然该限制值从污泥负荷的概念上理解是针对整个厌氧污泥,实际上真正的对象是针对厌氧污泥中的产甲烷菌。超负荷运行,实际上就是负荷量超过了厌氧污泥中产甲烷菌的产甲烷能力,而此时的负荷量往往并没有超过厌氧污泥的水解酸化能力。所以就出现了反应器的VFA开始累积,浓度不断上升,出水pH值降低,去除效率下降这种污泥酸化现象的发生。所以,了解定制EGSB厌氧反应器厂家厌氧反应器的污泥总量,并以此来维持合理的运行负荷,是预防厌氧反应器出现酸化的重要手段之一。2、pH值、温度等运行控制条件出现严重偏差由于厌氧污泥中产甲烷菌对其生存条件的要求比水解酸化菌苛刻的多,所以当反应器的pH值或温度的控制范围出现很大的偏差,就会使产甲烷菌的产甲烷能力受到严重影响,而水解酸化菌所受到的影响却远远小于产甲烷菌,其结果同样会导致厌氧反应器发生酸化现象。