联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
1、厌氧颗粒污泥的制备对颗粒污泥或絮状污泥进行接种,接种后密封在恒温水浴中保存待用。2、加入营养液及微量元素向密闭的反应器中加入制备好的厌氧颗粒污泥,再加入营养液到达指定的刻度,所述营养液包括必须营养液和微童元素物质。3、设置厌氧颗粒污泥培养条件开启设置在所述反应器内的搅拌装置,调整转速进行搅拌,采用定向搅拌,同时将所述反应器内废水的PH值控制在6.5~8. 2之间,温度控制在25~55C之间,并使氧化还原电位值控制在小于或等于-350mV,盐度小于0000mg/14、排泥在反应过程中如出现污泥膨胀悬浮,则关闭所述搅拌装置静置5~ 15分钟,通过设置在所述反应器上的第一阀]将腾胀污泥排出:当厌氧颗粒污泥粒径达到3~7mm,色泽灰黑色,关闭所述搅拌装置静置10~ 30分钟,打开设置在所述反应器上的第二阀门,将污泥颗粒排出。
1、碱度一般进水水质中碱度通常应在1000mg/L(以CaCO3计)左右,而对于以碳水化合物为主的废水,进水碱度:COD >1:3是必要的。研究表明在颗粒污泥培养初期,控制出水碱度在1000mg/L(以CaCO3计)以上能成功培养出颗粒污泥。在颗粒污泥成熟后,对进水的碱度要求并不高。这对降低处理成本具有积极意义。2、微量元素及惰性颗粒微量元素对微生物良好的生长也有重要作用。其中Fe,Co,Ni,Zn等对提高污泥活性,促进颗粒污泥形成是有益的。此外,惰性颗粒作为菌体附着的核,对颗粒化起着积极的作用。另外,有研究表明,投加活性炭可大大缩短污泥颗粒化的时间;在投加活性炭后颗粒污泥的粒径大,并使反应器运行更加稳定。3、SO42-局部氢的高分压是诱导微生物产生胞外多聚物从而与细菌表面之间的相互作用,通过带电基团的静电吸引及物理接触等架桥作用,构成一种包含多种组分的生物絮体,从而形成颗粒污泥的必要条件,而有硫酸盐存在时,由于硫酸盐还原菌对氢的快速利用,使反应器无法建立高的氢分压,从而不利于形成颗粒污泥。4、接种污泥及接种量接种污泥无特殊要求,但接种污泥的不同对形成颗粒污泥的快慢有直接影响。因此,保证污泥的沉降性能好、厌氧微生物种类丰富、活性高,对加快颗粒污泥的形成是十分有利的。对接种污泥的量,有学者研究认为,厌氧污泥接种量为11.5kgVSS/m3(按反应区容积计算)左右时,对于迅速培养出厌氧颗粒污泥是合适的。
进水井进水井里设置溢流口和进水闸门,在来水量超过系统负荷或者处理系统发生事故的情况下,关闭进水闸门,污水直接通过溢流口就近排入河道或者市政管网。格栅污水中经常含有大量杂物,为了保证膜生物反应器的正常运行,必须将各种纤维、渣物、废纸等杂物拦截在系统之外,因此在膜生物反应器前设置格栅,定期将栅渣清理干净。调节池收集的污水水量和水质都是随着时间变化的,为了保证后续处理系统的正常运行,降低运行负荷,需要对污水的水量和水质进行调解,因此在进入生物处理系统前设计调节池。调节池内需要定期清理沉淀物。调节池一般设置溢流,在负荷过大的情况下,保证系统的运行正常。毛发聚集器在中水处理系统内,由于收集的洗浴废水内含有少量的毛发和纤维,不清理干净,会对水泵和膜生物反应器反应器造成堵塞,降低处理效率,并可能最终造成整个系统的瘫痪,因此在中水处理系统内需要设置毛发过滤器。反应池在膜生物反应器反应池里进行着有机污染物的降解和泥水的分离。作为处理系统的核心部分,反应池里面包括微生物菌落、膜组件、集水系统、出水系统、曝气系统。消毒装置根据出水的要求,膜生物反应器设计有消毒装置,可自动控制加药量。
IC厌氧反应器是一种高效的多级内循环反应器,为第三代厌氧反应器的代表类型(UASB为第二代代表类型),与第二代厌氧反应器相比,它具有占地少、有机负荷高、抗冲击能力更强,性能更稳定、操作管理更简单。1.抗低温能力强:温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重。通常IC反应器厌氧消化可在常温条件(20—25 ℃)下进行,这样减少了消化保温的困难,节省了能量。2.具有缓冲pH值的能力:内循环流量相当于第1 厌氧区的出水回流,可利用COD转化的碱度,对pH值起缓冲作用,使反应器内pH值保持更好的状态,同时还可减少进水的投碱量。3.内部自动循环,不必外加动力:普通厌氧反应器的回流是通过外部加压实现的,而IC 反应器以自身产生的沼气作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。
食品、生物、化工等行业排放大部分废水都属于高浓度有机废水,仅利用常规的物化、生化处理较难达到处理目的,同时存在投资大,操作管理难,运行成本高等一系列问题。随着科研的不断深入,厌氧反应器作为一种高效的生物膜处理方法渐渐登上舞台,它主要是利用微生物与污水中的有机物接触吸附分解有机物,以达到有效处理有机废水、废弃物的目的。目前厌氧反应器的发展已经历了三代,本期小沼将对这三代最具代表性的厌氧反应器及其优劣势进行梳理,望对君从事有机废水、废弃物处理及大中型沼气工程的建设有所帮助!第一代厌氧反应器第一代反应器以厌氧消化池为代表,废水与厌氧污泥完全混合,属低负荷系统。包括:常规厌氧反应器(CADT)、全混式反应器(CSTR)、厌氧接触消化器(ACP)等。1常规厌氧反应器(CADT)常规厌氧反应器也叫常规沼气池,是一种结构简单、应用广泛的工艺类型。该消化器无搅拌装置,原料在其中呈自然沉淀状态,一般分为4层,自上而下依次为浮渣层、上清液层、活性层和沉渣层,其中易于消化、活动旺盛的场所只限活性层,因而效率较低。我国农村较为常见。2全混式反应器(CSTR)全混式消化器是在常规消化器中安装了搅拌装置,使得原料处于完全混合状态,因而,使得活性区域遍布于整个消化区,效率相比于常规消化器明显提高,故又称高效消化器。该消化器常采用恒温连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。
一般来说,对于以产甲烷为主要目的的厌氧过程要求pH值在6.5~8.0之间,废水碱度偏低或运行负荷过高时,会引起反应器内挥发酸积累,导致产甲烷菌活力丧失而产酸菌大量繁殖,持续过久时,会导致产甲烷菌活力丧失殆尽而产乙酸菌大量繁殖,引起反应器系统的“酸化沧州定制厌氧生物反应器”。严重酸化发生后,反应器难以恢复至原有状态。厌氧消化作用失去平衡时会显示出如下“症状”:①沼气产量下降;②沼气中甲烷含量降低;③消化液VFA增高;④有机物去除率下降;⑤消化液pH值下降;⑥碳酸盐碱度与总碱度之间的差值明显增加;⑦洗出的颗粒污泥颜色变浅没有光泽;⑧反应器出水产生明显异味;⑨ORP(氧化还原电位)值上升等。1、厌氧反应器酸化的原因厌氧反应器超负荷运行我们都知道,在运行厌氧反应器的各项工艺控制条件中,污泥负荷是一个非常重要的控制参数。污泥负荷是指单位时间内施加给单位质量厌氧污泥的有机物的量,以kgSCOD/kgVS.d表示。对于某种废水,厌氧污泥具有一个最大的限制值,当运行的负荷超过该最大限制值,则意味着超负荷运行。虽然该限制值从污泥负荷的概念上理解是针对整个厌氧污泥,实际上真正的对象是针对厌氧污泥中的产甲烷菌。超负荷运行,实际上就是负荷量超过了厌氧污泥中产甲烷菌的产甲烷能力,而此时的负荷量往往并没有超过厌氧污泥的水解酸化能力。所以就出现了反应器的VFA开始累积,浓度不断上升,出水pH值降低,去除效率下降这种污泥酸化现象的发生。所以,了解定制厌氧生物反应器制造商厌氧反应器的污泥总量,并以此来维持合理的运行负荷,是预防厌氧反应器出现酸化的重要手段之一。2、pH值、温度等运行控制条件出现严重偏差由于厌氧污泥中产甲烷菌对其生存条件的要求比水解酸化菌苛刻的多,所以当反应器的pH值或温度的控制范围出现很大的偏差,就会使产甲烷菌的产甲烷能力受到严重影响,而水解酸化菌所受到的影响却远远小于产甲烷菌,其结果同样会导致厌氧反应器发生酸化现象。