联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
1、碱度一般进水水质中碱度通常应在1000mg/L(以CaCO3计)左右,而对于以碳水化合物为主的废水,进水碱度:COD >1:3是必要的。研究表明在颗粒污泥培养初期,控制出水碱度在1000mg/L(以CaCO3计)以上能成功培养出颗粒污泥。在颗粒污泥成熟后,对进水的碱度要求并不高。这对降低处理成本具有积极意义。2、微量元素及惰性颗粒微量元素对微生物良好的生长也有重要作用。其中Fe,Co,Ni,Zn等对提高污泥活性,促进颗粒污泥形成是有益的。此外,惰性颗粒作为菌体附着的核,对颗粒化起着积极的作用。另外,有研究表明,投加活性炭可大大缩短污泥颗粒化的时间;在投加活性炭后颗粒污泥的粒径大,并使反应器运行更加稳定。3、SO42-局部氢的高分压是诱导微生物产生胞外多聚物从而与细菌表面之间的相互作用,通过带电基团的静电吸引及物理接触等架桥作用,构成一种包含多种组分的生物絮体,从而形成颗粒污泥的必要条件,而有硫酸盐存在时,由于硫酸盐还原菌对氢的快速利用,使反应器无法建立高的氢分压,从而不利于形成颗粒污泥。4、接种污泥及接种量接种污泥无特殊要求,但接种污泥的不同对形成颗粒污泥的快慢有直接影响。因此,保证污泥的沉降性能好、厌氧微生物种类丰富、活性高,对加快颗粒污泥的形成是十分有利的。对接种污泥的量,有学者研究认为,厌氧污泥接种量为11.5kgVSS/m3(按反应区容积计算)左右时,对于迅速培养出厌氧颗粒污泥是合适的。
1) 反应器的体积和高度 采用水力停留时间进行设计时,体积(V)按公式(1)或(2)计算。选择反应器高度的原则是设计、运行和上综合考虑的结果。从设计、运行方面考虑:高度会影响上升流速,高流速增加系统扰动和污泥与进水之间的接触。但流速过高会引起污泥流失,为保持足够多的污泥,上升流速不能超过一定的限值,从而使反应器的高度受到限制;高度与CO2溶解度有关,反应器越高溶解的CO2浓度越高,因此,pH值越低。如pH值低于最优值,会危害系统的效率。从经济上考虑: 土方工程随池深增加而增加,但占地面积则相反;考虑当地的气候和地形条件,一般将反应器建造在半地下减少建筑和保温费用。最经济的反应器高度(深度)一般是在4到6m之间,并且在大多数情况下这也是系统最优的运行范围。2) 反应器的升流速度 对于UASB反应器还有其他的流速关系(图2)。对于日平均上升流速的推荐值见表3,应该注意对短时间(如2~6h)的高峰值是可以承受的(即暂时的高峰流量可以接收)。表3 UASB和EGSB允许上升流速(平均日流量) Vr=0.25~3.0m/h0.75~1.0m/h 颗粒污泥絮状污泥 Vs≤1.5m/h颗粒污泥 Vo≤12m/h Vg=1m/h3) 反应器的截面积和反应器的长、宽(或直径)在确定反应器的容积和高度(H)之后,可确定反应器的截面积(A)。从而确定反应器的长和宽,在同样的面积下正方形池的周长比矩形池要小,矩形UASB需要更多的建筑材料。以表面积为600m2的反应器为例,30×20m的反应器与15m×40m的反应器周长相差10%,这意味着建筑费用要增加10%。但从布水均匀性考虑,矩形在长/宽比较大较为合适。从布水均匀性和经济性考虑,矩形池在长/宽比在2:1以下较为合适。长/宽比在4:1时费用增加十分显著。圆形反应器在同样的面积下,其周长比正方形的少12%。但这一优点仅仅在采用单个池子时才成立。当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。对于采用公共壁的矩形反应器,池型的长宽比对造价也有较大的影响。如果不考虑其他因素,这是一个在设计中需要优化的参数。
三相分离器主要安装在UASB、IC等厌氧反应器中,是厌氧反应器的核心组成部分,三相分离器直接影响着厌氧反应器的气、液、固的分离效果,可用于高浓度废水处理工程,如养殖污水、屠宰废水、制药废水、化工废水、食品废水等高浓度有机废水。三相分离器工作原理三相分离器收集反应室产生的沼气,使分离器内的悬浮物有效沉降。气、液、固三相流在分离器中分步进行分离。首先含沼气的混合液在上升的过程中随着气泡合并密度降低,不断向上流动,在气体释放区上升到液面,气体释放到气室中。气体释放后的液体通过导流区,进入沉降区,沉降区的结构如同沉淀池,混合液从两边进入,上清液由中间集水槽排出,沉降浓缩后的污泥密度大于分离器下部含有气体的混合液的密度,由污泥回流缝流回厌氧生物反应区,维持反应器中高生物浓度。三相分离器优化针对传统钢制三相分离器腐蚀严重,防腐措施收效甚微的现状。公司对三相分离器材料进行了革命,摒弃了传统的金属材料。开发出了耐腐蚀的非金属工程塑料三相分离器,彻底解决了腐蚀问题。
IC和UASB是厌氧反应器中最常见的两种结构形式。在之前的文章中,我们详细介绍了厌氧反应器-IC的结构,今天我们就来讲一讲UASB的结构和原理。1. UASB厌氧反应器的原理在UASB反应器中,废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状聊城定制IC反应器污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程中。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这有利于颗粒污泥的形成和维持。在污泥层形成的一些气体附着在污泥颗粒上,向反应器顶部上升,上升到表面的污泥撞击三相分离器气体发射板的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,而气体则被收集到三相分离器的集气室。在集气室单元缝隙之下设置挡板(气体反射器),其作用是为了防止沼气气泡进入沉淀区,否则将引起沉淀区的紊动,而阻碍颗粒沉淀。包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。由于三相分离器斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。同时随着流速降低,污泥絮体在沉淀区可以絮凝和沉淀。累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,而滑回反应区,这部分污泥又将与进水有机物发生反应。2. UASB反应器的结构USAB反应器包括进水和配水系统、反应器的池体和三相分离器。如果考虑整个厌氧系统,还应该包括沼气收集和利用系统。但是由于沼气利用定制IC反应器厂家的途径和目标不确定,其利用系统也有很大的差别。在USAB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体颗粒的沉淀效果,三相分离器最主要的目的就是尽可能有效地分离从污泥床中产生的沼气。特别是在高负荷的情况下,在集气室下面设置反射板,是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体紊动。
该设备内下设气、固、液三相分离器,有给出五大特性:a、选用耐腐蚀性高、刚度好、耐温性好的改性材料PP板才;b、下设单脉冲沼液消除泡沫塑料、浮渣的设备,分离出来实际效果佳;c、带集气室、沼液管及出入口活接头等;d、机器设备预制构件挤压成型,节省安装时间;e、在厌氧反应器中三相分离器承担挺大的沼液工作压力,为了防止电焊焊接部位裂开或板才胀裂,在重要支承位置安裝筋板,确保了工程施工质量和系统优化。能严控反应器内水、气、固的均衡,进而确保反应器高效率平稳运作。原理:随之废水与淤泥相触碰而产生水解酸化反映,造成沼液(汽体是甲烷和co2)造成淤泥床围压。在淤泥床造成的汽体中有一小部分粘附在淤泥颗粒物上,随意汽泡和粘附在淤泥颗粒物上的汽泡升高至反应器的顶端。淤泥颗粒物升高撞击到脱气隔板的底端,这造成粘附的汽泡放出;脱气的淤泥颗粒物沉定返回淤泥床的表层。随意汽体和从淤泥颗粒物放出的汽体被搜集在反应器顶端的集气房间内。液體中包括某些剩下的液体和生物颗粒进到到沉淀室内,剩下液体和生物颗粒从液體中分离出来并根据反射板落返回淤泥层的上边。分离出来汽体、液体后的液體再次升高,从出水堰溢流式,经集不锈钢水槽排出来。沼液集聚于三相分离器顶端,根据呼吸道排出来。低浓度有机化学生产废水历经厌氧反应器归一化处理后,有机化合物获得很多除去,COD急剧降低。