联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
IC和UASB是厌氧反应器中最常见的两种结构形式。在之前的文章中,我们详细介绍了厌氧反应器-IC的结构,今天我们就来讲一讲UASB的结构和原理。1. UASB厌氧反应器的原理在UASB反应器中,废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程中。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这有利于颗粒污泥的形成和维持。在污泥层形成的一些气体附着在污泥颗粒上,向反应器顶部上升,上升到表面的污泥撞击三相分离器气体发射板的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,而气体则被收集到三相分离器的集气室。在集气室单元缝隙之下设置挡板(气体反射器),其作用是为了防止沼气气泡进入沉淀区,否则将引起沉淀区的紊动,而阻碍颗粒沉淀。包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。由于三相分离器斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。同时随着流速降低,污泥絮体在沉淀区可以絮凝和沉淀。累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,而滑回反应区,这部分污泥又将与进水有机物发生反应。2. UASB反应器的结构USAB反应器包括进水和配水系统、反应器的池体和三相分离器。如果考虑整个厌氧系统,还应该包括沼气收集和利用系统。但是由于沼气利用的途径和目标不确定,其利用系统也有很大的差别。在USAB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体颗粒的沉淀效果,三相分离器最主要的目的就是尽可能有效地分离从污泥床中产生的沼气。特别是在高负荷的情况下,在集气室下面设置反射板,是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体紊动。
厌氧颗粒污泥分为淀粉、淀粉糖、柠檬酸、酒精、造纸等行业高浓度污水处理系统中的高负荷厌氧反应器(EGSB、IC)生产出的新鲜颗粒污泥。厌氧反应器的容积负荷、上升流速和去除率均分别高于20kgCOD/(m3˙d),5m/h和90%。作为接种污泥可用于淀粉、淀粉糖、柠檬酸、酒精、啤酒、造纸、蛋白、食品、味精等行业的污水处理系统中高负荷厌氧反应器(IC、EGSB、UASB等)的启动运行。培养颗粒污泥需考虑的因素基质培养颗粒污泥首先对基质有一定的要求,一般的,在培养颗粒污泥的基质中COD:N:P=110~200:5:1。而有机废液的基质可分为偏碳水化合物类和偏蛋白质类。为了能顺利培养出颗粒污泥,对于偏碳水化合物类的污水需要添加N和P。而对于偏蛋白质类的污水需要添加碳源(如葡萄糖等)。温度废水中的厌氧处理主要依靠微生物的生命活动来达到处理的目的,不同微生物的生长需要不同的温度范围。温度稍有差别,就可在两类主要种群之间造成不平衡。颗粒污泥在低温(15~25℃)、中温(30~40℃)和高温(50~60℃)都有过成功的经验。一般的,高温较中温的培养时间短,但由于高温下NH3与某些化合物混合毒性会增加,因而导致其应用上受一定的限制;中温一般控制在35℃左右,在其它条件适当的情况下,经1~3个月可成功的培养出颗粒污泥;低温下培养颗粒污泥的研究较少。PH值反应器内pH值范围应控制在产甲烷菌最适的范围内(6.8-7.2)。由于不同性质的废水有不同的pH值,为了保证反应器内pH值的稳定,防止酸积累而产生的对产甲烷菌的抑制,可采用向废水中添加化学药品如NaHCO3、Na2CO3、Ca(OH)2等物质。
在相当长的一段时间内,厌氧消化在理论、技术和应用上远远落后于好氧生物处理的发展。20世纪60年代以来,世界能源短缺问题日益突出,这促使人们对厌氧消化工艺进行重新认识,对处理工艺和反应器结构的设计以及甲烷回收进行了大量研究,使得厌氧消化技术的理论和实践都有了很大进步,并得到广泛应用。 目前,厌氧微生物处理重庆定制厌氧反应器工艺技术是高浓度有机废水处理工艺中不可或缺的处理工段,它较好氧微生物处理不仅能耗低,同时还可以产生沼气作为能源二次利用。厌氧反应容积负荷高较好氧反应高出很多,对于处理同等量的COD厌氧反应投资更低。在厌氧反应器的运行中,上升流速、水力停留时间和容积负荷等,那么这些数据都是如何计算的呢?今天我们就来讲一讲厌氧反应器日常运行中最常用的5个计算公式。1. 上升流速上升流速(Up flow Velocity)也叫表面速度(Superficial Velocity)或表面负荷(Superficial Loading Rate)。假定一个向上流动的反应器的进水流量(包括出水的循环)为Q(m3/h),反应器的横截面面积为A(m2),则上升流速u(m/h)可定义为:式中:u – 上升流速,单位米/小时Q - 反应器的进水流量,单位立方米/小时A - 反应器的横截面面积,单位平方米2. 水力停留时间水力停留时间(Hydrolic Retention Time)简写作HRT,它实际上指进入反应器的废水在反应器内的平均停留时间,因此,如果反应器的有效容积为V(m3),则式中:HRT – 水力停留时间V – 反应器容积,单位立方米Q - 反应器的进水流量,单位立方米/小时如果反应器高为H(m),则:因为Q=uA,V=HA所以HRT也可表示为如下公式,即水力停留时间等于反应器高度与上升流速之比。式中:HRT – 水力停留时间H - 反应器高度,单位米u -上升流速,单位米/小时3. 反应器的有机负荷反应器的有机负荷(Organic Loading Rate,简写作OLR)可“分为容积负荷(V定制厌氧反应器工艺技术制造商olume Loading Rate,简写作VLR)和污泥负荷(Sludge Loading Rate,简写作SLR)两种表示方式。 VLR即表示单位反应器容积每日接受的废水中有机污染物的量,其单位为kgCOD/(m3d)或kgBOD/(m3d)。假定进水浓度为pw(kgCOD/m3或kgBOD/m3),流量为q(m3/d),则:式中:VLR – 容积负荷Q - 反应器的进水流量,单位立方米/小时Pw - 进水浓度, 单位kgCOD/m3V - 反应器容积,单位立方米
1.油水界面的调节 根据油田油品特性特点不同,对油水指标要求不同,处理液量不同的特点,我们要及时分析,及时调整合理的油水界面。在三相分离器运行中,合理的油水界面是如何高效的发挥三相分离作用的必然条件。当低含水油进三相要求出合格油时,就应尽可能降低油水界面。 2.低含水油对三相分离器运行的影响和管理 目前本站使用的三相分离器都是卧式分离器,原油从进口进入沉降缓冲室。由于缓冲室与沉降之间连通,原油必须与缓冲室的水相混合。如果低含水油进三相,则易产生更多的乳化液,而使油水界面逐层下移,造成油水界面不清晰,造成水室跑油现象。 3.破乳剂、温度对三相分离器脱水的影响 破乳剂是一种高分子的有机化合物,是高效能的表面活性物质,当加入原油乳化液中,这种物质能够吸附在油水界面上挤掉乳化剂所占据的位置,降低了界面薄膜的机械强度,改变乳化液类型及稳定性.。长期以来破乳剂脱水是一项很有效的化学脱水方式。 三、高效三相分离器操作中出现的问题及处理办法1.在三相分离器分离过程中产生油串气(跑油)现象,即油箱中的油进入气天然气管道,随后进入气区,从而污染气区设备。高效三相分离器产生油串气现象时,原油随分离出的气进入气区设备,造成压缩机进油,严重时发生爆裂,所以一定要检测好数据,不能发生油串气现象。 产生油串气现象的原因有:采油区来液量过大;来液量忽高忽低,三相分离器处理时的平衡的动态性很强;油气界面调整不够准确,即过低而引起;分离器工作压力过低;出油、出水管线不畅,造成堵塞;三相分离器出现机械故障。 三相分离器产生油串气现象的解决方法和注意事项: 三相分离器产生油串气现象时,首先要紧急停压缩机,之后清扫三相分离器冷凝器中所有的原油,在清理压缩机中的原油,最后调整油水界面,使高效三相分离器再次达到平衡,投入使用。 2.三相分离器压力过低。即分离器的压力低于0.15Mpa 三相分离器压力过低时,分离器分离出的油压不进入稳定塔中;分离出的水压不进自然沉降罐;还有可能引起压缩机停机;分离效果不好,油水界面混乱,容易造成水串油现象。 引起三相分离器压力过低的原因有:采油区来液量小、含油气比例太小;机械故障,一般表现为漏气。