联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
进水井进水井里设置溢流口和进水闸门,在来水量超过系统负荷或者处理系统发生事故的情况下,关闭进水闸门,污水直接通过溢流口就近排入河道或者市政管网。格栅污水中经常含有大量杂物,为了保证膜生物反应器的正常运行,必须将各种纤维、渣物、废纸等杂物拦截在系统之外,因此在膜生物反应器前设置格栅,定期将栅渣清理干净。调节池收集的污水水量和水质都是随着时间变化的,为了保证后续处理系统的正常运行,降低运行负荷,需要对污水的水量和水质进行调解,因此在进入生物处理系统前设计调节池。调节池内需要定期清理沉淀物。调节池一般设置溢流,在负荷过大的情况下,保证系统的运行正常。毛发聚集器在中水处理系统内,由于收集的洗浴废水内含有少量的毛发和纤维,不清理干净,会对水泵和膜生物反应器反应器造成堵塞,降低处理效率,并可能最终造成整个系统的瘫痪,因此在中水处理系统内需要设置毛发过滤器。反应池在膜生物反应器反应池里进行着有机污染物的降解和泥水的分离。作为处理系统的核心部分,反应池里面包括微生物菌落、膜组件、集水系统、出水系统、曝气系统。消毒装置根据出水的要求,膜生物反应器设计有消毒装置,可自动控制加药量。
在相当长的一段时间内,厌氧消化在理论、技术和应用上远远落后于好氧生物处理的发展。20世纪60年代以来,世界能源短缺问题日益突出,这促使人们对厌氧消化工艺进行重新认识,对处理工艺和反应器结构的设计以及甲烷回收进行了大量研究,使得厌氧消化技术的理论和实践都有了很大进步,并得到广泛应用。 目前,厌氧微生物处理营口定制厌氧内循环反应器是高浓度有机废水处理工艺中不可或缺的处理工段,它较好氧微生物处理不仅能耗低,同时还可以产生沼气作为能源二次利用。厌氧反应容积负荷高较好氧反应高出很多,对于处理同等量的COD厌氧反应投资更低。在厌氧反应器的运行中,上升流速、水力停留时间和容积负荷等,那么这些数据都是如何计算的呢?今天我们就来讲一讲厌氧反应器日常运行中最常用的5个计算公式。1. 上升流速上升流速(Up flow Velocity)也叫表面速度(Superficial Velocity)或表面负荷(Superficial Loading Rate)。假定一个向上流动的反应器的进水流量(包括出水的循环)为Q(m3/h),反应器的横截面面积为A(m2),则上升流速u(m/h)可定义为:式中:u – 上升流速,单位米/小时Q - 反应器的进水流量,单位立方米/小时A - 反应器的横截面面积,单位平方米2. 水力停留时间水力停留时间(Hydrolic Retention Time)简写作HRT,它实际上指进入反应器的废水在反应器内的平均停留时间,因此,如果反应器的有效容积为V(m3),则式中:HRT – 水力停留时间V – 反应器容积,单位立方米Q - 反应器的进水流量,单位立方米/小时如果反应器高为H(m),则:因为Q=uA,V=HA所以HRT也可表示为如下公式,即水力停留时间等于反应器高度与上升流速之比。式中:HRT – 水力停留时间H - 反应器高度,单位米u -上升流速,单位米/小时3. 反应器的有机负荷反应器的有机负荷(Organic Loading Rate,简写作OLR)可“分为容积负荷(V定制厌氧内循环反应器制造商olume Loading Rate,简写作VLR)和污泥负荷(Sludge Loading Rate,简写作SLR)两种表示方式。 VLR即表示单位反应器容积每日接受的废水中有机污染物的量,其单位为kgCOD/(m3d)或kgBOD/(m3d)。假定进水浓度为pw(kgCOD/m3或kgBOD/m3),流量为q(m3/d),则:式中:VLR – 容积负荷Q - 反应器的进水流量,单位立方米/小时Pw - 进水浓度, 单位kgCOD/m3V - 反应器容积,单位立方米
它相似由2层UASB反应器串联而成。按功能划分,反应器由下而上共分为5个区:混合区、第1厌氧区、第2厌氧区、沉淀区和气液分离区。混合区:反应器底部进水、颗粒污泥和气液分离区回流的泥水混合物有效地在此区混合。第1厌氧区:混合区形成的泥水混合物进入该区,在高浓度污泥作用下,大部分有机物转化为沼气。混合液上升流和沼气的剧烈扰动使该反应区内污泥呈膨胀和流化状态,加强了泥水表面接触,污泥由此而保持着高的活性。随着沼气产量的增多,一部分泥水混合物被沼气提升至顶部的气液分离区。气液分离区:被提升的混合物中的沼气在此与泥水分离并导出处理系统,泥水混合物则沿着回流管返回到最下端的混合区,与反应器底部的污泥和进水充分混合,实现了混合液的内部循环。 第2厌氧区:经第1厌氧区处理后的废水,除一部分被沼气提升外,其余的都通过三相分离器进入第2厌氧区。该区污泥浓度较低,且废水中大部分有机物已在第1厌氧区被降解,因此沼气产生量较少。沼气通过沼气管导入气液分离区,对第2厌氧区的扰动很小,这为污泥的停留提供了有利条件。沉淀区:第2厌氧区的泥水混合物在沉淀区进行固液分离,上清液由出水管排走,沉淀的颗粒污泥返回第2厌氧区污泥床。从IC反应器工作原理中可见,反应器通过2层三相分离器来实现SRT>HRT,获得高污泥浓度;通过大量沼气和内循环的剧烈扰动,使泥水充分接触,获得良好的传质效果。
EGSB厌氧反应器(Expanded Granular Sludge Blanket Reactor),中文名膨胀颗粒污泥床,是第三代厌氧反应器。是继UASB之后的一种新型的厌氧反应器。它由布水器、三相分离器、集气室及外部进水系统组成一个完整系统。废水经过污水泵进入EGSB厌氧反应器的有机物充分与厌氧罐底部的污泥接触,大部分被处理吸收。高水力负荷和高产气负荷使污泥与有机物充分混合,污泥处于充分的膨胀状态,传质速率高,大大提高了厌氧反应速率和有机负荷。所产生的沼气上升到顶部经过三相分离器把污泥、污水、沼气分离开来。 从实际运行情况看,EGSB厌氧反应器对有机物的去除率高达85%以上,运行稳定,出水稳定,此EGSB厌氧技术已经非常成熟,已经广泛运用到国内中大型企业。
一、三相分离器结构及工作原理 1、三相分离器的工艺流程 所有来油经游离水三项分离器分离再添加破乳剂进入换热器加热升温至70~75℃然后进入高效三相分离器进行分离,分离器压力控制在0.15~0.20Mpa,油液面控制在80~100cm、水液面控制在100~120cm,除油器进出口压差控制在0.2Mpa,处理合格后的原油含水率控制在2%左右经稳定塔闪蒸稳定后进入原油储罐,待含水小于0.8%后外输至管道。 2、三相分离器工作原理 各采油队来液由分离器进液管进入进液舱,容积增大,流速降低,缓冲降压,气体随压力的降低自然逸出上浮,在进液舱油、气、水靠比重差进行初步分离。分离后的水从底部通道进入沉降室。经过分离的液体经过波纹板时,由于接触面积增加,不锈钢波纹板又具有亲水憎油的特性,再进行油、气、水的分离。随后进入沉降室,靠油水比重差进行分离;通过加热使液体温度增加,增加油水分子碰撞机会,加大了油水比重差;小油滴和小水滴碰撞机会多聚结为大油滴和大水滴,加速油水分离速度;油上浮、水下沉实现油、水进一步分离;油、气和水通过出口管线排出。 2.1重力沉降分离 分离器正常工作时,液面要求控制在1/2~2/3之间。在分离器的下部分是油水分离区。经过一定的沉降时间,利用油和水的比重差实现分离。 2.2 离心分离 油井生产出来的油气混合物在井口剩余压力的作用下,从油气分离器进液管喷到碟形板上使液体和气体,在离心力的作用下气体向上,而液体(混合)比重大向下沉降在斜板上,向下流动时,还有一部分气体向气出口方向流去,当气体流到削泡器处,需改变气体的流动方向,气体比重小,在气体中还有一部分大于100微米的液珠与消泡器碰撞掉下沉降到液面上,同时液面上的油泡碰撞在削泡器,使气体向上流动,完成了离心的初步气液分离 2.3碰撞分离 当离心分离出来的气体进入分离器上面除雾器,气体被迫绕流,由于油雾的密度大,在气体流速加快时,雾状液体惯性力增大,不能完全的随气流改变方向,而除雾器网状厚度300mm截面孔隙只有0.3mm小孔道,雾滴随气流提高速度,获得惯性能量,气体在除雾器中不断的改变方向,反复改变速度,就连续造成雾滴与结构表面碰撞并吸附在除雾器网上。吸附在除雾器网上油雾逐渐累起来,由大变小,沿结构垂直面流下,从而完成了碰撞分离。