联系人:高经理
手 机:13361082001
邮 箱:13361082001@163.com
网 址:www.shengxuda.com
地 址:山东省济南市槐荫区日照路2048号中泽大厦2001
废气处理的方法有分为稀释扩散法、水吸收法、曝气式脱臭法、催化氧化法、低温等离子稀释扩散法 原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低松原定制内循环厌氧反应器、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低 产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质 适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。 催化氧化法 原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中定制内循环厌氧反应器制造商高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 低温等离子法 原理:低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 低温等离子体空气净化设备能够显著治理的污染有:VOC、恶臭气体、异味气体、油烟、粉尘,也可用于消毒杀菌。低温等离子体技术是一种全新的净化过程,不需要任何添加剂、不产生废水、废渣,不会导致二次污染。
1.油水界面的调节 根据油田油品特性特点不同,对油水指标要求不同,处理液量不同的特点,我们要及时分析,及时调整合理的油水界面。在三相分离器运行中,合理的油水界面是如何高效的发挥三相分离作用的必然条件。当低含水油进三相要求出合格油时,就应尽可能降低油水界面。 2.低含水油对三相分离器运行的影响和管理 目前本站使用的三相分离器都是卧式分离器,原油从进口进入沉降缓冲室。由于缓冲室与沉降之间连通,原油必须与缓冲室的水相混合。如果低含水油进三相,则易产生更多的乳化液,而使油水界面逐层下移,造成油水界面不清晰,造成水室跑油现象。 3.破乳剂、温度对三相分离器脱水的影响 破乳剂是一种高分子的有机化合物,是高效能的表面活性物质,当加入原油乳化液中,这种物质能够吸附在油水界面上挤掉乳化剂所占据的位置,降低了界面薄膜的机械强度,改变乳化液类型及稳定性.。长期以来破乳剂脱水是一项很有效的化学脱水方式。 三、高效三相分离器操作中出现的问题及处理办法1.在三相分离器分离过程中产生油串气(跑油)现象,即油箱中的油进入气天然气管道,随后进入气区,从而污染气区设备。高效三相分离器产生油串气现象时,原油随分离出的气进入气区设备,造成压缩机进油,严重时发生爆裂,所以一定要检测好数据,不能发生油串气现象。 产生油串气现象的原因有:采油区来液量过大;来液量忽高忽低,三相分离器处理时的平衡的动态性很强;油气界面调整不够准确,即过低而引起;分离器工作压力过低;出油、出水管线不畅,造成堵塞;三相分离器出现机械故障。 三相分离器产生油串气现象的解决方法和注意事项: 三相分离器产生油串气现象时,首先要紧急停压缩机,之后清扫三相分离器冷凝器中所有的原油,在清理压缩机中的原油,最后调整油水界面,使高效三相分离器再次达到平衡,投入使用。 2.三相分离器压力过低。即分离器的压力低于0.15Mpa 三相分离器压力过低时,分离器分离出的油压不进入稳定塔中;分离出的水压不进自然沉降罐;还有可能引起压缩机停机;分离效果不好,油水界面混乱,容易造成水串油现象。 引起三相分离器压力过低的原因有:采油区来液量小、含油气比例太小;机械故障,一般表现为漏气。
IC 有如下几大特点:a、容积负荷率高,水力停留时间短IC反应器生物量大(可达到30~50g/L),污泥龄长。特别是由于存在着内、外循环,传质效果好。处理高浓度有机污水,进水容积负荷率可达 5~20kgCOD/m3·d。b、抗冲击负荷强在IC反应器中,当COD负荷增加时,沼气的产生量随之增加,内循环的气提增大。处理高浓度污水时,循环流量可达进水流量的10~20倍,污水中高浓度和有害物质得到充分稀释,大大降低有害程度,从而提高了反应器的耐冲击负荷能力;当COD负荷较低时,沼气产量也低,从而形成较低的内循环流。因此,内循环实际为反应器起到了自动平衡COD冲击负荷的作用。c、避免了固形物沉积有一些污水中含有大量的悬浮物质,会在 UASB 等流速较慢的反应器内发生累积,将厌氧污泥逐渐置换,最终使厌氧反应器的运行效果恶化乃至失效。而在IC 反应器中,高的液体和气体上升流速,将悬浮物冲击出反应器。d、基建投资省和占地面积小由于IC反应器的容积负荷率比普通的UASB反应器要高3~4倍以上,所以IC 反应器的体积为普通UASB反应器的1/4~1/3 左右,而且有很大的高径比,占地面积特别省,可降低反应器的基建投资,非常使用于占地面积紧张的厂家采用。
厌氧颗粒污泥分为淀粉、淀粉糖、柠檬酸、酒精、造纸等行业高浓度污水处理系统中的高负荷厌氧反应器(EGSB、IC)生产出的新鲜颗粒污泥。厌氧反应器的容积负荷、上升流速和去除率均分别高于20kgCOD/(m3˙d),5m/h和90%。作为接种污泥可用于淀粉、淀粉糖、柠檬酸、酒精、啤酒、造纸、蛋白、食品、味精等行业的污水处理系统中高负荷厌氧反应器(IC、EGSB、UASB等)的启动运行。培养颗粒污泥需考虑的因素基质培养颗粒污泥首先对基质有一定的要求,一般的,在培养颗粒污泥的基质中COD:N:P=110~200:5:1。而有机废液的基质可分为偏碳水化合物类和偏蛋白质类。为了能顺利培养出颗粒污泥,对于偏碳水化合物类的污水需要添加N和P。而对于偏蛋白质类的污水需要添加碳源(如葡萄糖等)。温度废水中的厌氧处理主要依靠微生物的生命活动来达到处理的目的,不同微生物的生长需要不同的温度范围。温度稍有差别,就可在两类主要种群之间造成不平衡。颗粒污泥在低温(15~25℃)、中温(30~40℃)和高温(50~60℃)都有过成功的经验。一般的,高温较中温的培养时间短,但由于高温下NH3与某些化合物混合毒性会增加,因而导致其应用上受一定的限制;中温一般控制在35℃左右,在其它条件适当的情况下,经1~3个月可成功的培养出颗粒污泥;低温下培养颗粒污泥的研究较少。PH值反应器内pH值范围应控制在产甲烷菌最适的范围内(6.8-7.2)。由于不同性质的废水有不同的pH值,为了保证反应器内pH值的稳定,防止酸积累而产生的对产甲烷菌的抑制,可采用向废水中添加化学药品如NaHCO3、Na2CO3、Ca(OH)2等物质。
调整出气阀门,使三相分离器中压力恢复,达到分离器的工作压力标准。同时在日常操作中的注意事项为:监控数据,观察稳定塔和自然沉降罐的液面是否下降,观察分离器的油水界面。 3.高效三相分离器压力控制失灵,造成压力大幅度波动 由于各种原因,使自动放气系统失灵,操作人员应根据具体情况,采取相应措施进行处理;若控制阀关闭,分离器压力超过0.60Mpa时还不能打开,操作人员应及时打开控制阀旁通,使压力控制在0.25~0.35Mpa 五、结论 简单介绍三相分离器日常操作中出现的问题的分析以及在操作中要注意的问题: 1.原油处理过程中的高效三项分离器液面和压力控制为关键过程,同时高效三项分离器的平衡是一个动态平衡,所以一定要做好数据监控,并且自然沉降罐液位增减的速度,原油稳定塔的液面及其操作压力等参数也是三项分离器平稳运行与否的重要依据。 2.三相分离中油水界面的控制非常重要,界面过高,减少了油相停留时间,缩短了油中水珠的聚结时间,会增加油中含水率,但水在设备内的停留时间增大,利于水中含油减少;界面过低,利于油中含水降低,但不利于水中油珠聚结,会造成水中含油增高。因此控制好油水界面对三相分离器的分离效果及其重要。