UASB厌氧反应器
您当前的位置 : 首 页 > 企业分站

东营定制UASB厌氧反应器制造商

2022-06-07
东营定制UASB厌氧反应器制造商

厌氧反应器是污水系统厌氧工艺段的主要设备,其运行的好坏直接影响整个污水处理系统的运行。今天,我们就来谈一谈IC厌氧反应器日常运行中的注意要点。IC反应器,即内循环厌氧反应器,由布水系统、上下两层三项分离器以及顶部的脱气罐构成。与UASB反应器相比,在相同处理速率的条件下,IC反应器具有更高的进水容积负荷东营定制UASB厌氧反应器和污泥负荷率。IC反应器的平均上升流速度可达到处理同类废水UASB反应器的16-20倍左右。相比其他结构的厌氧反应器,IC反应器具有如下优势:(1) 容积负荷高。 IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通厌氧反应器的3倍以上。(2) 投资省和占地面积小。IC反应器容积负荷率高出普通UASB反应器3倍左右,其体积大约相当于普通反应器的1/4—1/3,大大降低了反应器的基建投资;而且IC反应器高径比很大(一般为2~8),所以占地面积少。(3) 抗冲击负荷能力强。处理低浓度废水(COD=2000~3000mg/l)时,反应器内循环流量可达进水量的2~3倍;处理高浓度废水(COD=10000~15000mg/l)时,内循环流量可达进水量的5~10倍。大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了有毒物质对厌氧消化过程的影响。IC厌氧反应器的控制参数主要有以下几点:1. 污泥菌种厌氧污泥中具有处理污染物能力的就是细菌等有机物质,菌群的组成及菌种的成分决定了其颗粒强度、产甲烷活性及对污水的适应能力。一般来说,厌氧颗粒污泥中有机物成分占70%左右,污泥外部菌种主要为丝菌,污泥内部主要为杆菌、球菌等。2. pH值反应器进水PH值一般应控制在6.5~7.5之间,过高或过低的PH值都会对工艺造成影响,主要体现在对厌氧菌(主要是产甲烷菌)活性的影响,包括:影响菌体及酶系统的生理功能和活性影响环境的氧化还原电位影响基质的活性。产甲烷菌的这些性质功能遭到破坏定制UASB厌氧反应器制造商后,处理COD的活性就会大大降低。3. 温度反应器进水温度要求控制在35~38之间。因为产甲烷菌大多数都属于中温菌,在这个范围内,其处理效率是很高的。当温度高于40℃时,处理效率会急剧下降。4. 容积负荷厌氧反应器具有很高的容积负荷,一般情况下为10~18kgCOD/m3/d(不同厂家的IC容积负荷会有差异,某些品牌的IC容积负荷可能更高)。短期内进水负荷的变化幅度最好不要过大,要让厌氧菌有一定的适应时间,应逐步增加或降低负荷。如果条件可以,尽量使其负荷在一个范围之间趋于稳定的状态。负荷过低或过高,都会对IC的正常厌氧处理产生巨大影响。

东营定制UASB厌氧反应器制造商

厌氧颗粒污泥分为淀粉、淀粉糖、柠檬酸、酒精、造纸等行业高浓度污水处理系统中的高负荷厌氧反应器(EGSB、IC)生产出的新鲜颗粒污泥。厌氧反应器的容积负荷、上升流速和去除率均分别高于20kgCOD/(m3˙d),5m/h和90%。作为接种污泥可用于淀粉、淀粉糖、柠檬酸、酒精、啤酒、造纸、蛋白、食品、味精等行业的污水处理系统中高负荷厌氧反应器(IC、EGSB、UASB等)的启动运行。培养颗粒污泥需考虑的因素基质培养颗粒污泥首先对基质有一定的要求,一般的,在培养颗粒污泥的基质中COD:N:P=110~200:5:1。而有机废液的基质可分为偏碳水化合物类和偏蛋白质类。为了能顺利培养出颗粒污泥,对于偏碳水化合物类的污水需要添加N和P。而对于偏蛋白质类的污水需要添加碳源(如葡萄糖等)。温度废水中的厌氧处理主要依靠微生物的生命活动来达到处理的目的,不同微生物的生长需要不同的温度范围。温度稍有差别,就可在两类主要种群之间造成不平衡。颗粒污泥在低温(15~25℃)、中温(30~40℃)和高温(50~60℃)都有过成功的经验。一般的,高温较中温的培养时间短,但由于高温下NH3与某些化合物混合毒性会增加,因而导致其应用上受一定的限制;中温一般控制在35℃左右,在其它条件适当的情况下,经1~3个月可成功的培养出颗粒污泥;低温下培养颗粒污泥的研究较少。PH值反应器内pH值范围应控制在产甲烷菌最适的范围内(6.8-7.2)。由于不同性质的废水有不同的pH值,为了保证反应器内pH值的稳定,防止酸积累而产生的对产甲烷菌的抑制,可采用向废水中添加化学药品如NaHCO3、Na2CO3、Ca(OH)2等物质。

东营定制UASB厌氧反应器制造商

EGSB、UASB等所有的厌氧内部的三相分离器等是指反应器内的三相分离器造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。对污泥床的正常运行和获得良好的出水水质起十分重要的作用; 1、沉淀区的表面水力负荷<1.0m/h; 2、三相分离器集气罩顶以上的覆盖水深可采用0.5~1.0m; 3、沉淀区四壁倾斜角度应在45º~60º之间,使污泥不积聚,尽快落入反应区内; 4、沉淀区斜面高度约为0.5~1.0m; 5、进入沉淀区前,沉淀槽底缝隙的流速≤2m/h; 1、沉淀区的设计主要考虑沉淀区的表面积和水深这两个因素。由于沉淀区的厌氧污泥与出水中残余的有机物尚能起生化反应,在沉淀区仍有少量的沼气产生,对沉淀区的固液分离有些干扰,因此在处理高浓度有机废水时,表面负荷率应采用得小一些,一般表面负荷率<1.0m³/h,且沉淀区进水口的水流上升速度应小于2m/s。为获得良好的固液分离效果,沉淀区斜面的高建议为0.5~1.0m,斜面与水平方向的夹角在45°~60°之间,且光滑,以利于污泥下滑返回反应区。总沉淀水深应≥1.5m,水力停留时间介于1.5~2h,分离气体的挡板与分离器壁重叠在20mm以上;以上条件如能满足,则可达到良好的分离效果。2、回流缝的设计为了使回流缝的水流稳定,回流缝中水流的速度不能太高,以确保良好的气、固、液三相的分离效果,并使沉淀区沉降下来的污泥能迅速顺利地回流至反应区,回流缝中水流速度一般<2m/s。为达到气液分离目的,气封与沉淀区的斜面必须重叠。重叠的水平距离越大,气体的分离效果越好,对沉淀区固液分离效果的影响越小,重叠部分一般在0.1~0.2m之间。3、气液分离设计确定了三相分离器的基本尺寸后,还应校核气液分离效果是否满足要求。为了保证气泡不进人沉淀室,就必须使回流缝宽度和气液分离斜面的长度,以及气泡上升速度满足一定的关系,以使气泡合成速度方向的指向不低于沉淀室的缝隙口边缘点。气泡分离而不进入沉淀室的必要条件是:vb/va>BC/AB。气泡垂直上升速度vb的大小与碰撞系数β,气泡直径dg(cm),水温T(℃),废水的密度ρl(g·cm-3)和气体的密度ρg(g/cm³),废水的动力粘滞系数μ(g·cm-1s-1)和运动粘滞系数γ(cm2·s-1)等因素有关。当雷诺数Re<2时,气泡的上升流速可用斯托克斯公式计算:vb=β×g(ρl-ρg)d2g÷(18×μ)。

东营定制UASB厌氧反应器制造商

一、三相分离器结构及工作原理 1、三相分离器的工艺流程 所有来油经游离水三项分离器分离再添加破乳剂进入换热器加热升温至70~75℃然后进入高效三相分离器进行分离,分离器压力控制在0.15~0.20Mpa,油液面控制在80~100cm、水液面控制在100~120cm,除油器进出口压差控制在0.2Mpa,处理合格后的原油含水率控制在2%左右经稳定塔闪蒸稳定后进入原油储罐,待含水小于0.8%后外输至管道。 2、三相分离器工作原理 各采油队来液由分离器进液管进入进液舱,容积增大,流速降低,缓冲降压,气体随压力的降低自然逸出上浮,在进液舱油、气、水靠比重差进行初步分离。分离后的水从底部通道进入沉降室。经过分离的液体经过波纹板时,由于接触面积增加,不锈钢波纹板又具有亲水憎油的特性,再进行油、气、水的分离。随后进入沉降室,靠油水比重差进行分离;通过加热使液体温度增加,增加油水分子碰撞机会,加大了油水比重差;小油滴和小水滴碰撞机会多聚结为大油滴和大水滴,加速油水分离速度;油上浮、水下沉实现油、水进一步分离;油、气和水通过出口管线排出。 2.1重力沉降分离 分离器正常工作时,液面要求控制在1/2~2/3之间。在分离器的下部分是油水分离区。经过一定的沉降时间,利用油和水的比重差实现分离。 2.2 离心分离 油井生产出来的油气混合物在井口剩余压力的作用下,从油气分离器进液管喷到碟形板上使液体和气体,在离心力的作用下气体向上,而液体(混合)比重大向下沉降在斜板上,向下流动时,还有一部分气体向气出口方向流去,当气体流到削泡器处,需改变气体的流动方向,气体比重小,在气体中还有一部分大于100微米的液珠与消泡器碰撞掉下沉降到液面上,同时液面上的油泡碰撞在削泡器,使气体向上流动,完成了离心的初步气液分离 2.3碰撞分离 当离心分离出来的气体进入分离器上面除雾器,气体被迫绕流,由于油雾的密度大,在气体流速加快时,雾状液体惯性力增大,不能完全的随气流改变方向,而除雾器网状厚度300mm截面孔隙只有0.3mm小孔道,雾滴随气流提高速度,获得惯性能量,气体在除雾器中不断的改变方向,反复改变速度,就连续造成雾滴与结构表面碰撞并吸附在除雾器网上。吸附在除雾器网上油雾逐渐累起来,由大变小,沿结构垂直面流下,从而完成了碰撞分离。

东营定制UASB厌氧反应器制造商

升流式厌氧污泥床反应器(Upflow Anaerobic Sludge Blanket,UASB)是污水实现资源化的一种技术成熟、可行的污水处理工艺。我公司将专业的设计理念,结合娴熟的安装技术,使UASB反应器成功的运用到多种废水处理工艺中,取得了很好的运用效果。工作原理:UASB结构,由配水系统、污泥床区、污泥悬浮区、三相分离器、沉淀出水区组成。待处理的废水由配水系统从反应器底部进入,与污泥床中的污泥进行混合接触,污泥中的微生物分解废水中的有机物,把它转化为沼气,经三相分离器将沼气收集并分离出反应器,污泥沉淀后返回污泥床,出水经溢流堰排出。UASB厌氧反应器的运用优势有:1)外型结构可根据场地灵活设计2)不需另设混合搅拌设备3)反应器内不装载体4)污泥床内平均污泥浓度较高5)运行稳定、操作方便

东营定制UASB厌氧反应器制造商

1、有机负荷高厌氧反应器的有机负荷是UASB有机负荷的2-5倍,UASB的有机负荷通常为3-8kgCOD/m³·d,而EGSB的有机负荷可达6-25kgCOD/ m³·d。2、占地面积少因EGSB有机负荷比UASB高,EGSB高径比>UASB高径比,因此处理同样规模的有机废水,EGSB所占的地面面积远远少于UASB厌氧反应器的占地面积。3、运行稳定EGSB厌氧反应器采用的是厌氧颗粒污泥,污泥的沉降速度大于污水的上升速度,因此EGSB厌氧反应器很少会跑泥,因此运行稳定。4、EGSB运行控制1)温度:中温厌氧反应的最适宜温度范围为35~38°C,运行过程中的温度波动≤2°C/d。 2)pH值:正常情况下进水pH值控制在6.5以上,出水6.8~7.2。 3)其他指标:VFA、产气量、HCO3-碱度、N、P等营养元素,有毒物质。5、耐高负荷进水浓度的突然增加或进水量的突然改变,都会对厌氧反应器造成负荷冲击。EGSB因其内循环的作用,瞬间的高浓度的废水进入反应器后,产气量增大,气提量也会增大,从而内循环量大,大的内循环能将高浓度的废水迅速的稀释,从而减少了有机负荷变化对反应器的冲击。

标签